IVUS-Guided Percutaneous Coronary Intervention for Left Main and Bifurcation Lesion

Young Bin Song, MD, PhD

Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

How many options for bifurcation lesions?

Bifurcation lesion is very unique lesion

For side branch lesion

- DES implantation is not better than angioplasty
- Angioplasty is not better than "leave it alone"

Limitation of angiographic assessment in Bifurcation lesions

Overlapping mother and daughter vessel
→ Obscure the lesion and carina

Uniqueness of bifurcation lesions

- Various vessel size, Various amount of supplying myocardium
- Side branch ostial lesion is unique
 - ✓ Underlying plaque \rightarrow Eccentric plaque
 - ✓ Remodeling → Negative remodeling

Mechanism of side branch jailing after main vessel stenting
Carina shift, plaque shift, plaque prolapse, stents
struts, thrombus....

What can be guided by IVUS?

Key factors in bifurcation lesion treatment

- Determining anatomical configuration
- ✓ Selecting Strategy
- \checkmark Assessing the final results

Koskinas, et al. Eur Heart J, 2016

Precise anatomical lesion assessment

Mechanism of side branch stenosis

Plaque + Negative remodeling

Plaque

Importance of longitudinal view

Geometry of bifurcation lesion

- Amount, character and distribution of plaque
- Location, length of carina
- Distance between carina and outer lumen of a side branch

- Stent landing zone and reference analysis
- Measurement of the lesion length
- Detection of angiographically silent disease

IVUS-Guided PCI For Bifurcation Lesion

• Pre-intervention

- IVUS can provide detailed anatomical information which is very helpful to plan the intervention strategy
- Longitudinal view is important to predict what will happen in side branch after main vessel stent implantation.

IVUS assessment of bifurcation during the procedure

True vs Pseudo-stenosis after MV stenting

IVUS assessment of bifurcation during the procedure

Under-expansion & Over-expansion

Simple stent cross-over is associated with proximal stent under-sizing and distal stent over-sizing

Stent overexpansion

Optimal stenting

pMV = proximal main vessel, dMV = distal main vessel, main branch, SB = side branch

- Assessment and optimization of stent apposition and expansion
- Assessment of full lesion coverage by the stent
- Diagnosis and treatment of stent edge problems

Clinical outcome of IVUS-guided bifurcation PCI

Non-LM Bifurcation Stenting

COBIS Registry N=1668, Median FU 22.4 months

Clinical outcome of IVUS-guided bifurcation PCI

Non-LM Bifurcation Stenting

AMC Registry N=758, Median FU 4 years

IVUS guidance reduced very late stent thrombosis in patients receiving DESs for non-LM bifurcation.

Clinical outcome of IVUS-guided bifurcation PCI

Non-LM Bifurcation Stenting

Chen et al, N=628 with 2-stent, FU 1 years

The IVUS-guided two-stent technique was associated with significantly reduced late stent thrombosis, with a resultant reduction in cardiac death, and MI.

IVUS-MLA in LM: Population dependent

[Pre-PCI IVUS MLA Cutoff Value]

[Western Country Population] → LITRO registry

IVUS derived MLA of ≥6 mm2 identified candidates for safe deferral of LMCA revascularization

[Asian Population] → from AMC

In patients with isolated ostial and shaft intermediate LMCA stenosis, an IVUS-derived MLA of \leq 4.5 mm2 is a useful index of an FFR of \leq 0.80.

Post-PCI Optimization in LM

• IVUS predictors of in-stent restenosis (ISR) after LM bifurcation stenting

LCX carina - Ostial LCX Proximal POC Ostial LAD 5 mm LAD carina 5 mm

The MSA cut-offs that best predicted restenosis were 5.0 mm2 (LCX ostial ISR), 6.3 mm2 (LAD ostial ISR), 7.2 mm2 (POC ISR), and 8.2 mm2 (LMCA ISR above the POC).

Correcting underexpansion with these optimal IVUS criteria may reduce cardiac events

Abundant evidences favoring IVUS in LM PCI

[Clinical Outcome]

SCAAR Study From Sweden

IVUS-guided PCI in LM CAD significantly reduced the risks of all-cause death by ~40% compared with conventional angiographyguided PCI.

> Park SJ, et al. Circ Cardiovasc Interv, 2009 de la Torre Hernandez, et al. JACC:CVI, 2014 Pontus A, et al. Circ Cardiovasc Interv, 2017 Ye, et al. Plos One, 2017

IVUS-Guided PCI for Complex lesions

Primary Endpoint	Cardiac Death during 64 Months of Median Follow-up	
Secondary Endpoint	All-cause death, myocardial infarction, ischemia-driven target lesion revascularization, stent thrombosis, and MACE*	

CENTRAL ILLUSTRATION: Long-Term Clinical Outcomes Between IVUS-Guided and Angiography-Guided PCI for Complex Lesion

Procedural Factors

Clinical Outcomes

All Lesion	-	0.573 (0.460-0.714)
Bifurcation Lesion	-	0.682 (0.498-0.934)
Chronic Total Occlusion Lesion		0.670 (0.408-1.102)
Left Main Disease	-	0.203 (0.126-0.329)
Long Lesion	-	0.602 (0.450-0.804)
Multi-Vessel PCI	-	0.639 (0.473-0.864)
Multiple Stents Implantation		0.532 (0.332-0.855)
In-Stent Restenosis Lesion	-	- 0.837 (0.403-1.740)
Calcified Lesion		0.458 (0.052-4.012)
0.01 0.1	1	10
Favors Intravascular Ultraso	und	Favors Angiography

Choi, K.H. et al. J Am Coll Cardiol Intv. 2019;12(7):607-20.

Summary

- IVUS provides a precise characterization of the extension and morphology of LM & Bifurcation lesions. This allows a proper planification of the PCI strategy.
- IVUS guidance facilitates the final optimization of the PCI results in LM & Bifurcation lesions.
- Pooled analysis of studies shows a significant and consistent clinical benefit of IVUS guidance.

Thank You For Your Attention !

Young Bin Song, MD

Associate Professor, Heart Vascular Stroke Institute, Samsung Medical Center, Seoul, Republic of Korea

SAMSUNG MEDICAL CENTER

